Section 4.3 Trigonometry Extended: The Circular Functions

Two angles are ______ when they have the same initial and terminal sides. To find an angle that is coterminal to a given angle θ add or subtract 2π (one revolution). A given angle θ has _____ many coterminal angles.

Coterminal Angles

If θ is the measure of an angle in radians, then all angles measuring $\theta + 2n\pi$, where *n* is an integer, are coterminal with θ .

Example 1: For each problem draw the angles/ coterminal relationship.

a. For the positive angle $\frac{7\pi}{4}$, subtract 2π to obtain a coterminal angle.

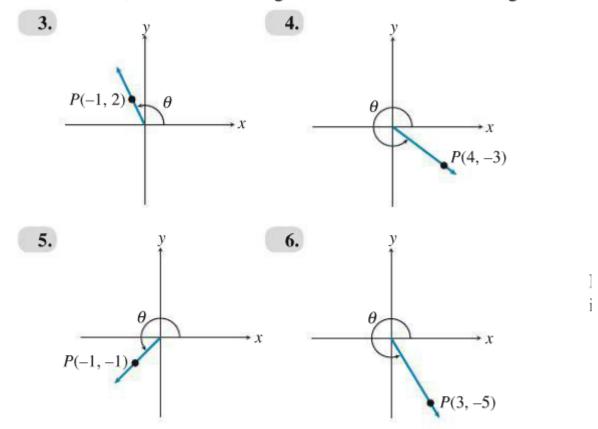
b. For the positive angle $\frac{5\pi}{6}$, subtract 2π to obtain a coterminal angle.

c. For the negative angle
$$-\frac{3\pi}{4}$$
, add 2π to find a coterminal angle.

Example 2: Find and draw a positive and negative coterminal angle with the given angle

a. 40° b. -120° c. $\frac{2\pi}{3}$ radians

In Exercises 3–6, evaluate the six trigonometric functions of the angle θ .



In Exercises 7–12, point P is on the terminal side of angle θ . Evaluate the six trigonometric functions for θ . If the function is undefined, write "undefined."

7. $P(3, 4)$	8. <i>P</i> (-4, -6)
9. <i>P</i> (0, 5)	10. <i>P</i> (-3, 0)
11. $P(5, -2)$	12. <i>P</i> (22, -22)

In Exercises 13–16, state the sign (+ or -) of (a) sin *t*, (b) cos *t*, and (c) tan *t* for values of *t* in the interval given.

13.
$$\left(0, \frac{\pi}{2}\right)$$
14. $\left(\frac{\pi}{2}, \pi\right)$ 15. $\left(\pi, \frac{3\pi}{2}\right)$ 16. $\left(\frac{3\pi}{2}, 2\pi\right)$

In Exercises 25–36, evaluate without using a calculator by using ratios in a reference triangle.

25. cos 120°	26. tan 300°
27. $\sec \frac{\pi}{3}$	28. $\csc \frac{3\pi}{4}$
29. $\sin \frac{13\pi}{6}$	30. $\cos \frac{7\pi}{3}$
31. $\tan -\frac{15\pi}{4}$	32. $\cot \frac{13\pi}{4}$
33. $\cos \frac{23\pi}{6}$	34. $\cos \frac{17\pi}{4}$
35. $\sin \frac{11\pi}{3}$	36. $\cot \frac{19\pi}{6}$

In Exercises 37–42, find (a) $\sin \theta$, (b) $\cos \theta$, and (c) $\tan \theta$ for the given quadrantal angle. If the value is undefined, write "undefined."

37. -450°	38. -270°
39. 7π	40. $\frac{11\pi}{2}$
41. $-\frac{7\pi}{2}$	42. -4π

In Exercises 43–48, evaluate without using a calculator.

43. Find sin θ and tan θ if cos θ = 2/3 and cot θ > 0.
44. Find cos θ and cot θ if sin θ = 1/4 and tan θ < 0.
45. Find tan θ and sec θ if sin θ = -2/5 and cos θ > 0.
46. Find sin θ and cos θ if cot θ = 3/7 and sec θ < 0.
47. Find sec θ and csc θ if cot θ = -4/3 and cos θ < 0.
48. Find csc θ and cot θ if tan θ = -4/3 and sin θ > 0.

We are now ready to state the formal definition.

DEFINITION Trigonometric Functions of Any Angle

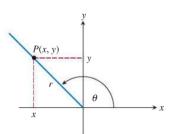


FIGURE 4.25 Defining the six trig functions of θ .

Let θ be any angle in standard position and let $P(x, y)$ be any point on the ter-
minal side of the angle (except the origin). Let r denote the distance from
$P(x, y)$ to the origin, i.e., let $r = \sqrt{x^2 + y^2}$. (See Figure 4.25.) Then

$\sin\theta = \frac{y}{r}$	$\csc \theta = \frac{r}{y} (y \neq 0)$
$\cos \theta = \frac{x}{r}$	$\sec \theta = \frac{r}{x} (x \neq 0)$
$\tan\theta = \frac{y}{x} \left(x \neq 0 \right)$	$\cot \theta = \frac{x}{y} \left(y \neq 0 \right)$

